Face Recognition Based on Generalized Canonical Correlation Analysis

نویسندگان

  • Quan-Sen Sun
  • Pheng-Ann Heng
  • Zhong Jin
  • De-Shen Xia
چکیده

We have proposed a new feature extraction method and a new feature fusion strategy based on generalized canonical correlation analysis (GCCA). The proposed method and strategy have been applied to facial feature extraction and recognition. Compared with the face feature extracted by canonical correlation analysis (CCA), as in a process of GCCA, it contains the class information of the training samples, thus, aiming for pattern classification it would improve the classification capability. Experimental results on ORL and Yale face image database have shown that the classification results based on GCCA method are superior to those based on CCA method. Moreover, those two methods are both better than the classical Eigenfaces or Fishierfaces method. In addition, the newly proposed feature fusion strategy is not only helpful for improving the recognition rate, but also useful for enriching the existing combination feature extraction methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Face Recognition in wavelet compressed domain using Canonical Correlation Analysis

This paper explores the possibility of implementing face recognition systems directly into wavelet based compressed domain. This is accomplished by stopping the decompression process after entropy decoding and providing the entropy points to face recognition systems as input. A novel approach for efficient face recognition in compressed domain has been implemented using 2-dimensional Canonical ...

متن کامل

Holistic and Gabor-local Feature-fusion for Face Recognition using Canonical Correlation Analysis (CCA)

Abstrak – In this paper, we propose a feature fusion method based on Canonical Correlation Analysis (CCA) for combining two feature extractors to increase robustness of face recognition against pose and illumination changes. At first holistic features, eigenfaces (PCA) and Gabor phase congruency image (GPCI) features are extracted from facial images respectively and then CCA finds the transform...

متن کامل

IR and visible-light face recognition using canonical correlation analysis

This paper proposes a novel multispectral feature extraction method according to the idea of canonical correlation analysis (CCA). Instead of extracting two groups of features with the same pattern (modality) as usual, the work explores another type of application of CCA that for extracting most correlated features from different face modalities to form effective discriminant vectors for recogn...

متن کامل

Super-resolution for Face Recognition Based on Correlated Features and Nonlinear Mappings

For the problem of low recognition rate on low resolution face images, a super-resolution method for face recognition based on correlated features and nonlinear mappings is proposed in this paper. Canonical correlation analysis (CCA) is applied to establish the correlated subspaces between the features of high and low resolution face images, and radial base functions (RBFs) are employed to cons...

متن کامل

Kernel Discriminant Analysis Based on Canonical Differences for Face Recognition in Image Sets

A novel kernel discriminant transformation (KDT) algorithm based on the concept of canonical differences is presented for automatic face recognition applications. For each individual, the face recognition system compiles a multi-view facial image set comprising images with different facial expressions, poses and illumination conditions. Since the multi-view facial images are non-linearly distri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005